
1

GSoC 2021 PostgreSQL Project Proposal

Develop Performance Farm Benchmarks and Website

1. Basic Information

• Name: YoungHwan Joo

• Website (CV & Portfolio & Links): https://rulyox.com

• Email: rulyox@gmail.com

• Location: Seoul, South Korea (UTC+09:00)

2. About me

I am YoungHwan Joo, a 20-year-old student majoring Computer Science in Hanyang University, Seoul,

South Korea. I finished 4 semesters and I took a semester off. So, I am not attending university classes in

2021. I am mostly interested in full-stack web development and databases.

I am currently working at Bio-Medical Informatics Lab, Seoul National University Hospital as an

application developer and a data scientist. I worked at SNUH from December 2019. I worked full-time in

vacations and part-time during the semester. One of the biggest projects that I developed is called Drug

Dashboard. This is a web application that visualizes statistics about drugs that are used. I used the OMOP

CDM Schema on PostgreSQL and AWS Redshift. I developed this full-stack including databases, back-end,

front-end, and deployment.

Also, I am participating in a project called LobbyView which is from Massachusetts Institute of Technology.

I worked on data querying using SQL, front-end development, and API development. I have been working

at LobbyView since July 2020 and this project is not a full-time job but more of a sub project.

I am familiar with technological stacks such as Front-end using React, Vue, Back-end using Node.js

Express, Python Flask, Django, Java Spring, Relational Databases, and Infrastructure Systems such as

Docker.

Furthermore, I love learning new technology and solving problems. I can quickly learn and combine

software skills to solve a complex problem.

3. Why I am interested in PostgreSQL

I have always been passionate about open-source and I use a lot of open-source software, frameworks,

and libraries. However, I didn’t have a chance to contribute to an actual open-source project. This is why

I am applying to GSoC 2021.

Because my biggest interests are web development and databases, and because I am using PostgreSQL a

lot, I thought that I would be most passionate if I could contribute to PostgreSQL’s projects.

While I was working in the organizations above and doing my personal projects, I learned some complex

SQL skills such as Window Functions, CUBE, and ways to optimize Common Table Expressions. I am also

a big fan of JSONB. Furthermore, I have used automatic API generation tools with PostgreSQL such as

PostGraphile and PostgREST in my projects.

https://rulyox.com/
mailto:rulyox@gmail.com

2

4. Project Abstract

PostgreSQL is a big and active open-source project. This means that the code changes frequently and there

are a lot of branches and commits. When big changes are made, performance has to be tested.

Performance Farm is a program that can be used to collect and visualize the benchmark results while the

source code changes.

The actual tests can be run on Linux and maxOS machines while the users can easily see the results using

a website.

5. Current System

The Performance Farm consists of 3 parts.

• Client: Clones source code from a specific repository. Create a temporary PostgreSQL cluster. Run

pgbench. Collect results. Upload results to the API.

• API: Uses Django. Receive benchmark results from the Client. Provides REST API. Uses DB for storing

past results and user information.

• Front-end Website: Built with Vue. Visualizes benchmark results.

Current System Diagram

3

6. Features to be implemented

Below are the features that were in the GSoC ideas list and I added some details.

• Collect system metadata

When doing a benchmark, collecting information about the system is important.

In the current version, some basic data from the DB, operating system, kernel, CPU, and data from sysctl

is collected.

Using collectd, we can collect CPU and memory utilization during the benchmark. I think that data such

as highest values or the time period it held the highest utilization rate could be useful.

With the pg_stat_statement extension, we can get some internal data of the DB such as number of cache

hits of shared, local, and temp blocks.

• Admin panel inside website

Currently, the only way to change the API’s configurations is through the Django Administration. However,

this should not be open to the public.

Django Administration Page

Adding an admin panel to the Front-end Website would be the appropriate way.

In the admin panel, there should be menus to manage the connected machines and to manage supported

repositories.

4

Administration Panel Mockup

This is the mockup example of the admin panel.

• GUI improvements

User Interface and User Experience is always an important point to consider.

The users of Performance Farm should be able to easily see the benchmark results, find especially fast or

slow results, and compare results between specific time points or git commits.

First, improvements for the “trend” page.

Currently, Plotly is being used to visualize a Latency/TPS chart for each machine. However, these charts

are broken in some situations. I hope to use D3.js which is a highly flexible visualization library and

because this library has only few constraints, it will work well in most situations.

Also, I think adding a menu to change the X axis which is currently only commit to support both commit

and time. Additionally, a way to select the starting point and end point of the X axis is needed because if

there is a lot of data, it will be hard to see everything in a single chart screen.

Second, improvements for the “benchmarks” page.

Currently, the benchmarks page simply lists the configurations. This is hard to see if there are a lot of

configurations. I think the configurations have to be sorted in the order by the number of machines that

use it.

Also, there should be a filter to select specific configurations. For example, a user might want to search

only the configurations that’s scale is 2 and that did a read-write test.

Finally, improvement about the whole website.

The first time I opened the Performance Farm website, I was confused because there were many different

pages. Especially, run, trend, and result pages were confusing.

I think there should be some kind of navigation or page hierarchy that shows what page I am currently at.

Also, a simple description for each page would be nice.

5

• Dependency removal

Programs that are in the PostgreSQL project have to be maintained stably. Also, contributors have to be

familiar with the frameworks that are used. This is the reason why dependency removal is necessary.

The Front-end Website is using a lot of npm packages. Though npm packages are easy to use, they are

heavy and they do not have a reliable repository.

Vue itself is also a dependency. Conversion to vanilla JavaScript will also be an improvement. However, if

Vuetify is removed, we should think about alternative design systems or ways to deliver a clean and

seamless UI.

The most important features of Vue that is used currently are reuse of components, routing using Vue

Router, and state management using Vuex. These are the most important features that have to be

developed when migrating to vanilla JavaScript.

If we are not using Vue Router, we don’t have to make a SPA website but just make multiple pages. Also, a

state manager can be made by having functions that update and subscribe the data.

7. Potential ideas

These are the ideas that I thought would be a nice feature for Performance Farm. However, these ideas

should be discussed more and they have lower priorities.

• Benchmark execution through API or Website using a Client Manager

Currently to manually start a benchmark, a user has to access the Client directly.

I think permitting the administrator or privileged users to start a benchmark at a specific machine would

be a useful feature.

However, this could lead to security problems. For example, the admin of the API could damage the Client

by sending too many execution commands. To solve this, I thought of a module called Client Manager.

A Client can be used in 2 ways. The first way is a normal machine which is the current way. The second

way is a registered machine which uses the Client Manager. Only machines that are willing to be used by

remote executions have to use the second way.

6

Normal Machines and Registered Machines

Client Manager is a module that acts as a simple HTTP server. First, it registers itself to the API. The API

can send commands as a HTTP request to the registered machine. If the Client Manager receives a request,

it executes the Client.

There should be some security measures such as checking authentication of the request. Also, the Client

Manager should prevent overflowing the Client’s workload. This can be done by rejecting requests from

the API if the Client process is currently running or a lot of requests came in a certain time period.

• Watch for git actions

Currently, tools such as crontab are used for automatic executions. However, checking the actual git

actions would be more efficient and accurate than simply running according to time.

I think that developing a small program that watches for commits, pull requests, merges and executes

Performance Farm Client would be nice.

Also, this feature can be integrated into the Client Manager in the idea above.

• Support custom forks

There are organizations and companies that build their own fork version of PostgreSQL. I thought that

these organizations might want to run Performance Farm specifically for their forks to test their version’s

performance.

The current version of Performance Farm only displays results of official repositories. I hope to add

options that enables to choose certain repositories to be displayed.

7

• Containerizing using Docker

I have cloned the Performance Farm source code and tested it. However, I had some dependency issues

and some processes were uncomfortable. Because Performance Farm builds the whole DBMS, there were

a lot of requirements needed.

If Performance Farm gets containerized, not only setting up everything on a new machine but also

processes such as updating Performance Farm to a new version will be much more easier.

• Code conventions and testing

Many people can contribute to open-source projects. This means that having a rule to enforce a consistent

code style can be helpful. Also, unit testing could be a great way to find bugs and fix them.

I checked that PEP8 and ESLint are being used in the current code. When using JavaScript, TypeScript

could also be used.

For testing, Python unittest and JavaScipt libraries such as Jest can be used.

8. Schedule

• Application Period ~ April 21 (3 weeks)

Before GSoC announcement.

Test Performance Farm using different environments and settings.

Use and understand unfamiliar PostgreSQL tools such as pgbench and pg_ctl.

Analyze existing code.

• April 21 ~ May 18 (4 weeks)

Design concrete improvement methods.

Make mockups for new web elements and the admin page.

• May 18

GSoC announcement.

• May 18 ~ June 2 (2 weeks)

Get to know the team better.

Community bonding is an important step because many people participate in open source projects.

Start discussing about potential ideas.

8

• June 2 ~ June 16 (2 weeks)

Coding officially starts.

Upgrade the Client and the API.

Add metadata collection to the Client.

Add authentication features to the API.

• June 16 ~ June 23 (1 week)

Create essential features such as components and state managers using vanilla JavaScript.

• June 23 ~ July 13 (3 weeks)

Migrate to vanilla JavaScript.

Use new design systems.

• July 13 ~ July 17

First evaluation between mentors and students.

• July 13 ~ July 28 (2 weeks)

Upgrade the front-end website.

Add the admin panel.

Improve GUI.

• July 28 ~ August 17 (3 weeks)

Test and fix bugs.

Implement other potential ideas after discussing with mentors and the team.

• August 17 ~ August 24

Submit code and final evaluation.

• The future

I hope to contribute to Performance Farm and other software in the PostgreSQL ecosystem even after

GSoC 2021.

